546 research outputs found

    Geometric Objects: A Quality Index to Electromagnetic Energy Transfer Performance in Sustainable Smart Buildings

    Get PDF
    Sustainable smart buildings play an essential role in terms of more efficient energy. However, these buildings as electric loads are affected by an important distortion in the current and voltage waveforms caused by the increasing proliferation of nonlinear electronic devices. Overall, buildings all around the world consume a significant amount of energy, which is about one-third of the total primary energy resources. Optimization of the power transfer process of such amount of energy is a crucial issue that needs specific tools to integrate energy-efficient behaviour throughout the grid. When nonlinear loads are present, new capable ways of thinking are needed to consider the effects of harmonics and related power components. In this manner, technology innovations are necessary to update the power factor concept to a generalized total or a true one, where different power components involved in it calculation, properly reflect each harmonic interaction. This work addresses an innovative theory that applies the Poynting Vector philosophy via Geometric Algebra to the electromagnetic energy transfer process providing a physical foundation. In this framework, it is possible to analyse and detect the nature of disturbing loads in the exponential growth of new globalized buildings and architectures in our era. This new insight is based on the concept of geometric objects with different dimension: vector, bivector, trivector, multivector. Within this paper, these objects are correlated with the electromagnetic quantities responsible for the energy flow supplied to the most common loads in sustainable smart buildings. Besides, it must be considered that these phenomena are characterized by a quality index multivector appropriate even for detecting harmonic sources. A numerical example is used to illustrate the clear capabilities of the suggested index when it applies to industrial loads for optimization of energy control systems and enhance comfort management in smart sustainable buildings

    Continuous harmonic analysis and power quality measurements in three-phase systems

    Get PDF
    A virtual instrument, named Power Quality Meter, is presented for (a) measuring power consumption and harmonics in three-phase systems, under non-sinusoidal and imbalance conditions (b) detecting, classifying and organizes power disturbance events. Measurement of the power consumption follows the formulation proposed by the members of the IEEE Working Group on Nonsinusoidal Situations (1996). So, definitions are based on the analysis of functions in the frequency domain, separating the fundamental terms from the harmonic terms of the Fourier series. The virtual instrument has been developed too for monitoring and measuring power disturbances, which are automatically classified and organized in a database while they are being recorded. Software tools use the database structure to present summaries of power disturbances and locate an event by severity or time of occurrence. Records of actual measurements are included to demonstrate the versatility of the instrument

    Energy conservation law in industrial architecture: an approach through geometric algebra

    Get PDF
    This article belongs to the Special Issue Symmetry in Systems Design and AnalysisSince 1892, the electrical engineering scientific community has been seeking a power theory for interpreting the power flow within electric networks under non-sinusoidal conditions. Although many power theories have been proposed regarding non-sinusoidal operation, an adequate solution is yet to be found. Using the framework based on complex algebra in non-sinusoidal circuit analysis (frequency domain), the verification of the energy conservation law is only possible in sinusoidal situations. In this case, reactive energy turns out to be proportional to the energy difference between the average electric and magnetic energies stored in the loads and its cancellation is mathematically trivial. However, in industrial architecture, apparent power definition of electric loads (non-sinusoidal conditions) is inconsistent with the energy conservation law. Up until now, in the classical complex algebra approach, this goal is only valid in the case of purely resistive loads. Thus, in this paper, a new circuit analysis approach using geometric algebra is used to develop the most general proof of energy conservation in industrial building loads. In terms of geometric objects, this powerful tool calculates the voltage, current, and apparent power in electrical systems in non-sinusoidal, linear/nonlinear situations. In contrast to the traditional method developed by Steinmetz, the suggested powerful tool extends the concept of phasor to multivector-phasors and is performed in a new Generalized Complex Geometric Algebra structure (CGn), where Gn is the Clifford algebra in n-dimensional real space and C is the complex vector space. To conclude, a numerical example illustrates the clear advantages of the approach suggested in this paper

    A Survey on Optimization Techniques Applied to Magnetic Field Mitigation in Power Systems

    Get PDF
    With the continuous increase in the number and relevance of electric transmission lines and distribution networks, there is a higher exposure to the magnetic fields generated by them, leading to more cases of human electrosensitivity, which greatly necessitates the design and development of magnetic field mitigation procedures and, at the same time, the need to minimize both performance degradation and deterioration in the efficiency as well. During the last four decades, fruitful results have been reported about extremely low frequency magnetic field mitigation, giving a wide variety of solutions. This survey paper aims to give a comprehensive overview of cost-effective optimization techniques destined to magnetic field mitigation in power systems, with particular attention to the results reported in the last decade.Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (AEI/FEDER, UE) project ENE2017-89669-RUniversidad de Sevilla (VI PPIT-US) grant 2018/0000074

    Evaluation of the power frequency magnetic field generated by three-core armored cables through 3D finite element simulations

    Get PDF
    The great expansion in offshore power plants is raising the concern regarding the cumulative effect of the electromagnetic field emissions caused by submarine power cables. In this sense, owners are required to predict these emissions during the permitting and consenting process of new power plants. This is a challenging task, especially in the case of HVAC three-core armored cables due to their complex geometry. Customarily, 2D approaches based on the finite element method (FEM) have been employed for evaluating the magnetic field emissions caused by these cables. However, inaccurate results are obtained since the phase conductors and armor twisting is omitted. This work develops, for the first time in the literature, an in-depth analysis of the magnetic field caused by this type of cable through an ultra-shortened 3D-FEM model, which is also faced to experimental measurements taken on an actual 132 kV, 800 mm2 three-core armored cable. Relevant conclusions are derived regarding the impact of the cable design on the magnetic field emissions, including material properties, as well as single and double-layer armors, presenting the proposed model not only as a valuable tool for predicting purposes, but also for optimizing cable design in terms of magnetic field emissions

    An Approach to the Multivectorial Apparent Power in Terms of a Generalized Poynting Multivector

    Get PDF
    The purpose of this paper is to explain an exact derivation of apparent power in n-sinusoidal operation founded on electromagnetic theory, until now unexplained by simple mathematical models. The aim is to explore a new tool for a rigorous mathematical and physical analysis of the power equation from the Poynting Vector (PV) concept. A powerful mathematical structure is necessary and Geometric Algebra offers such a characteristic. In this sense, PV has been reformulated from a new Multivectorial Euclidean Vector Space structure (CGn-R3) to obtain a Generalized Poynting Multivector ( ~ S). Consequently, from ~ S, a suitable multivectorial form ( ~ P and ~D) of the Poynting Vector corresponds to each component of apparent power. In particular, this framework is essential for the clari¯cation of the connection between a Complementary Poynting Multivector (~D) and the power contribution due to cross-frequency products. A simple application example is presented as an illustration of the proposed power multivector analysis

    Deep learning for the modeling and inverse design of radiative heat transfer

    Full text link
    Deep learning is having a tremendous impact in many areas of computer science and engineering. Motivated by this success, deep neural networks are attracting increasing attention in many other disciplines, including the physical sciences. In this work, we show that artificial neural networks can be successfully used in the theoretical modeling and analysis of a variety of radiative-heat-transfer phenomena and devices. By using a set of custom-designed numerical methods able to efficiently generate the required training data sets, we demonstrate this approach in the context of three very different problems, namely (i) near-field radiative heat transfer between multilayer systems that form hyperbolic metamaterials, (ii) passive radiate cooling in photonic crystal slab structures, and (iii) thermal emission of subwavelength objects. Despite their fundamental differences in nature, in all three cases we show that simple neural-network architectures trained with data sets of moderate size can be used as fast and accurate surrogates for doing numerical simulations, as well as engines for solving inverse design and optimization in the context of radiative heat transfer. Overall, our work shows that deep learning and artificial neural networks provide a valuable and versatile toolkit for advancing the field of thermal radiatio

    Tunable Thermal Emission of Subwavelength Silica Ribbons

    Full text link
    The thermal properties of individual subwavelength objects, which defy Planck’s law, are attracting significant fundamental and applied interest in different research areas. Special attention has been devoted to anisotropic structures made of polar dielectrics featuring thicknesses smaller than both the thermal wavelength and the skin depth. Recently, a novel experimental technique has enabled the measurement of the thermal emissivity of anisotropic SiO2 nanoribbons (with thicknesses on the order of 100 nm), demonstrating that their emission properties can be largely tuned by adjusting their dimensions. However, despite the great interest aroused by these results, their rigorous theoretical analysis has remained elusive due to the computational challenges arising from the vast difference in the length scales involved in the problem. In this work, we present a systematic theoretical analysis of the thermal emission properties of these dielectric nanoribbons based on simulations within the framework of fluctuational electrodynamics carried out with the boundary element method implemented in the SCUFF-EM code. In agreement with the experiments, we show that the emissivity of these subwavelength structures can be largely tuned and enhanced over the thin-film limit. We elucidate that the peculiar emissivity of these nanoribbons is due to the very anisotropic thermal emission that originates from the phonon polaritons of this material and the properties of the waveguide modes sustained by these dielectric structures. Our work illustrates the rich thermal properties of subwavelength objects, as well as the need for rigorous theoretical methods that are able to unveil the complex thermal emission phenomena emerging in this class of systemsJ.J.G.E. was supported by the Spanish Ministry of Science and Innovation through an FPU grant (FPU19/05281). J.B.A. acknowledges financial support from the Ministerio de Ciencia, Innovacioń y Universidades (RTI2018-098452-B-I00). J.C.C. acknowledges funding from the Spanish Ministry of Science and Innovation (PID2020-114880GB-I00

    Considerations on the non-active power using geometric algebra

    Get PDF
    Several approaches have been developed to define the non-active power concept under nonsinusoidal situations in electrical systems. Nevertheless, these contributions do not provide a complete and satisfactory solution to the non-active power reversibility between frequency domain and time domain. This paper presents a non-active power multivector concept, based on an original vector space frequency-domain approach that bridges the gap between both domains. The suggested correspondence can provide a convenient descriptive language to reconcile Fryze’s instantaneous non-active power with Budeanu´s deactive-power

    Diseño de un prototipo Analizador de Señales para la medida de la calidad de la potencia eléctrica de los regímenes no senoidales

    Get PDF
    Analizar la onda de la red eléctrica en tiempo real mediante algoritmos matemáticos, aplicando distintos regímenes de cargas y observando su comportamiento, creando un patrón, sobre el cual, en futuros estudios, poder actuar mitigando los efectos perjudiciales que las cargas no lineales que las nuevas tecnologías determinan sobre la red eléctrica. Para ello, se ha procedido a la creación de un prototipo que permite testar cualquier clase de carga ante la presencia de todo tipo de perturbaciones eléctricas, realizando la medida de la calidad de la potencia, utilizando diferentes técnicas de análisis
    corecore